
Converting	from	Immutable	to	
Mutable	Objects

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	10.4

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Key	Points	for	Lesson	10.4
• We	need	to	document	our	assumptions	about	
statefulness in	our	interfaces.

• Void means	that	the	function	can	return	any	value	it	
wants,	so	the	caller	must	ignore	the	returned	value.

• A	function	that	has	a	Void return	contract	must	have	
an	EFFECT,	so	we	must	document	this	as	part	of	the	
purpose	statement.

• We	can	transform	a	method	definition	that	produces	a	
new	object	into	one	that	alters	this	object	by	doing	a	
set!	on	the	fields	that	should	change.

• This	is	the	only	acceptable	use	of	set! in	this	course.		

2

The	first	thing	we	do	is	introduce	a	
new	interface

;; Every stable (stateful) object that lives in the world must implement the
;; SWidget<%> interface.

(define SWidget<%>
(interface ()

; -> Void
; GIVEN: no arguments
; EFFECT: updates this widget to the state it should have
; following a tick.
after-tick

; Integer Integer -> Void
; GIVEN: a location
; EFFECT: updates this widget to the state it should have
; following the specified mouse event at the given location.
after-button-down
after-button-up
after-drag

; KeyEvent -> Void
; GIVEN: a key event
; EFFECT: updates this widget to the state it should have
; following the given key event
after-key-event

; Scene -> Scene
; GIVEN: a scene
; RETURNS: a scene like the given one, but with this object
; painted on it.
add-to-scene
))

3

add-to-scene still	
returns	a	scene

We	adopt	 the	convention	
that	stateful things	have	

names	starting	with	"S".		Thus	
Swidget<%>	is	the	interface	

for	stateful widgets.

New	contracts

• Key	contract	(in	Swidget<%>)
on-mouse :
Integer Integer MouseEvent -> Void

• Void means	that	the	function	can	return	any	
value	it	wants.

• The	caller	of	the	function	can’t	rely	on	it	
returning	any	meaningful	value

• So	the	caller	must	ignore	the	returned	value

4

If	we	don’t	return	a	useful	value,	then	
what?

• A	function	that	has	a	Void return	contract	
must	have	an	EFFECT.

• Must	document	this	as	part	of	the	purpose	
statement:

5

Example	of	an	EFFECT	in	a	purpose	
statement

; -> Void
; GIVEN: no arguments
; EFFECT: updates this widget to the
; state it should have following a tick.
after-tick

6

Transforming	the	method	definition

• We	can	change	a	function	that	produces	a	new	object	into	
one	that	alters	this	object	by	doing	a	set!	on	the	fields	that	
should	change.		

• Often	this	is	only	a	small	subset	of	the	fields,	so	the	new	
code	is	considerably	shorter	than	the	old	one.

• When	we	do	this,	the	new	function	no	longer	produces	a	
meaningful	value,	so	whoever	calls	it	can	no	longer	rely	on	
its	value.		This	is	the	meaning	of	the	Void contract.

• In	other	languages,	Voidmeans	that	the	method	returns	no	
value	at	all.		In	Racket,	every	function	returns	some	value,	
so	we	use	Void to	mean	a	value	that	we	don’t	know	and	
don’t	care	about.

7

We	sometimes	call	this	code	“imperative”,	
because	it	deals	in	commands	rather	than	
values.

The	Void transformation:	method	
definition

; after-button-down : Integer Integer -> Void
; GIVEN: the location of a button-down event
; STRATEGY: Cases on whether the event is near the wall
(define/public (after-button-down mx my)

(if (near-wall? mx)
;; (new Wall%
;; [pos pos]
;; [selected? true]
;; [saved-mx (- mx pos)])
(begin

(set! selected? true)
(set! saved-mx (- mx pos))
this)

42))

8

We	change	each	method	
that	produces	a	new	wall	
into	one	that	alters	this	wall	
by	doing	a	set!	on	the	fields	
that	should	change.		

We	don't	care	what	value	is	
returned,	so	the	first	this can	be	

omitted;	the	begin returns	
whatever	it	returns	and	we	don't	

care.

begin evaluates	its	subexpressions	
from	left	to	right	and	returns	the	

value	of	the	 last	one.

However,	an	if	still	needs	 a	value	
for	the	"else"	case.		The	value	is	

ignored,	so	we've	put	in	a	
nonsense	 value,	42.

Another	example
; after-drag : Integer Integer -> Void
; GIVEN: the location of a drag event
; EFFECT: If the wall is selected, move it so that the
; vector from its position to the drag event is equal to
; saved-mx
; STRATEGY: Cases on whether the wall is selected.

(define/public (after-drag mx my)
(if selected?

;; (new Wall%
;; [pos (- mx saved-mx)]
;; [selected? true]
;; [saved-mx saved-mx])
(set! pos (- mx saved-mx))
; this
38))

9

Another	nonsense	 value	to	be	
ignored

We	modify	WorldState%	to	deal	with	
both	Widgets	and	SWidgets

(define (make-world-state objs sobjs)
(new WorldState% [objs objs][sobjs sobjs]))

(define WorldState%
(class* object% (WorldState<%>)

(init-field objs) ; ListOfWidget
(init-field sobjs) ; ListOfSWidget

(super-new)

;; after-tick : -> WorldState<%>
;; STRATEGY: Use map on the Widgets in this World; use for-each on the
;; stateful widgets

(define/public (after-tick)
(new WorldState%
[objs (lambda (obj) (send obj after-tick))]
[sobjs (begin

(for-each
(lambda (obj) (send obj after-tick)))

sobjs)]))

10

Other	methods	 in	
WorldState%	

modified	 similarly(*)

(*)	In	the	code,	I	actually	used	a	HOF	
process-widgets to	avoid	having	to	write	
this	out	several	times.

for-each is	like	map,	but	it	doesn't	make	a	
list	from	the	results.		Its	contract	is

(X	->	Void)	ListOfX ->	Void
See	the	Racket	documentation	 for	more.

And	we	have	to	initialize	the	world
;; initial-world : -> WorldState
;; RETURNS: a world with a stateful wall, and a ball that knows about
;; the wall.
(define (initial-world)

(local
((define the-wall (new Wall%))
(define the-ball (new Ball% [w the-wall])))

(make-world-state
(list the-ball)
(list the-wall))))

11

And	now	all's	well	with	the	world

• When	the	wall	moves,	it	gets	mutated	with	
set!,	but	it	retains	its	identity.

• The	ball	is	still	functional– at	every	tick	you	get	
a	new	Ball%	,	but	only	one	wall	ever	gets	
created,	and	every	incarnation	of	the	ball	sees	
it.

• Go	run	10-2B-stateful-wall.rkt

12

What	do	I	write	for	the	strategy?

• As	in	Week	09,	a	strategy	should	be	a	tweet-
sized	description	of	how	your	function	or	
method	works.

• Again	as	in	Week	09,	strategies	are	optional;	
write	them	if	they	are	useful.

• Look	at	the	examples	in	this	lesson	and	in	the	
example	files.

13

Review	of	Key	Points	for	Lesson	10.4

• We	need	to	document	our	assumptions	about	
statefulness in	our	interfaces.

• Void means	that	the	function	can	return	any	value	it	
wants,	so	the	caller	must	ignore	the	returned	value.

• A	function	that	has	a	Void return	contract	must	have	
an	EFFECT,	so	we	must	document	this	as	part	of	the	
purpose	statement.

• We	can	transform	a	method	definition	that	produces	a	
new	object	into	one	that	alters	this	object	by	doing	a	
set!	on	the	fields	that	should	change.

• This	is	the	only	acceptable	use	of	set! in	this	course.		

14

Next	Steps

• Study	10-2B-stateful-wall.rkt	in	the	Examples	
folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	10.1		
– Be	sure	to	do	this	one– there	is	new	material	in	
there.

• Go	on	to	the	next	lesson.

15

